Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
1.
Biomolecules ; 12(11)2022 11 08.
Article in English | MEDLINE | ID: covidwho-2109921

ABSTRACT

Adsorption of human serum albumin (HSA) molecules on negatively charged polystyrene microparticles was studied using the dynamic light scattering, the electrophoretic and the solution depletion methods involving atomic force microscopy. Initially, the physicochemical characteristics of the albumin comprising the hydrodynamic diameter, the zeta potential and the isoelectric point were determined as a function of pH. Analogous characteristics of the polymer particles were acquired, including their size and zeta potential. The formation of albumin corona on the particles was investigated in situ by electrophoretic mobility measurements. The size, stability and electrokinetic properties of the particles with the corona were also determined. The particle diameter was equal to 125 nm, which coincides with the size of the SARS-CoV-2 virion. The isoelectric point of the particles appeared at a pH of 5. The deposition kinetics of the particles was determined by atomic force microscopy (AFM) under diffusion and by quartz microbalance (QCM) under flow conditions. It was shown that the deposition rate at a gold sensor abruptly vanished with pH following the decrease in the zeta potential of the particles. It is postulated that the acquired results can be used as useful reference systems mimicking virus adsorption on abiotic surfaces.


Subject(s)
COVID-19 , Nanoparticles , Humans , Polymers/chemistry , SARS-CoV-2 , Adsorption , Serum Albumin, Human/chemistry , Virion , Surface Properties
2.
Cell Rep ; 37(3): 109869, 2021 10 19.
Article in English | MEDLINE | ID: covidwho-1517084

ABSTRACT

The dramatically expanding coronavirus disease 2019 (COVID-19) needs multiple effective countermeasures. Neutralizing nanobodies (Nbs) are a potential therapeutic strategy for treating COVID-19. Here, we characterize several receptor binding domain (RBD)-specific Nbs isolated from an Nb library derived from an alpaca immunized with the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) spike glycoprotein (S); among them, three Nbs exhibit picomolar potency against SARS-CoV-2 live virus, pseudotyped viruses, and circulating SARS-CoV-2 variants. To improve their efficacy, various configurations of Nbs are engineered. Nb15-NbH-Nb15, a trimer constituted of three Nbs, is constructed to be bispecific for human serum albumin (HSA) and RBD of SARS-CoV-2. Nb15-NbH-Nb15 exhibits single-digit ng/ml neutralization potency against the wild-type and Delta variants of SARS-CoV-2 with a long half-life in vivo. In addition, we show that intranasal administration of Nb15-NbH-Nb15 provides effective protection for both prophylactic and therapeutic purposes against SARS-CoV-2 infection in transgenic hACE2 mice. Nb15-NbH-Nb15 is a potential candidate for both the prevention and treatment of SARS-CoV-2 through respiratory administration.


Subject(s)
Administration, Intranasal , Angiotensin-Converting Enzyme 2/immunology , Antibodies, Bispecific/immunology , COVID-19/immunology , SARS-CoV-2 , Animals , Antibodies, Monoclonal/chemistry , Antibodies, Neutralizing , Antibodies, Viral/immunology , Camelids, New World , Epitopes/chemistry , Female , Humans , Kinetics , Male , Mice , Mice, Inbred C57BL , Mice, Transgenic , Neutralization Tests , Protein Binding , Protein Domains , Protein Engineering/methods , Serum Albumin, Human/chemistry , Single-Domain Antibodies , Spike Glycoprotein, Coronavirus/immunology
3.
J Transl Med ; 18(1): 452, 2020 11 30.
Article in English | MEDLINE | ID: covidwho-948411

ABSTRACT

BACKGROUND: Dysregulation of transcription and cytokine expression has been implicated in the pathogenesis of a variety inflammatory diseases. The resulting imbalance between inflammatory and resolving transcriptional programs can cause an overabundance of pro-inflammatory, classically activated macrophage type 1 (M1) and/or helper T cell type 1 (Th1) products, such as IFNγ, TNFα, IL1-ß, and IL12, that prevent immune switching to resolution and healing. The low molecular weight fraction of human serum albumin (LMWF5A) is a novel biologic drug that is currently under clinical investigation for the treatment of osteoarthritis and the hyper-inflammatory response associated with COVID-19. This study aims to elucidate transcriptional mechanisms of action involved with the ability of LMWF5A to reduce pro-inflammatory cytokine release. METHODS: ELISA arrays were used to identify cytokines and chemokines influenced by LMWF5A treatment of LPS-stimulated peripheral blood mononuclear cells (PBMC). The resulting profiles were analyzed by gene enrichment to gain mechanistic insight into the biologic processes and transcription factors (TFs) underlying the identified differentially expressed cytokines. DNA-binding ELISAs, luciferase reporter assays, and TNFα or IL-1ß relative potency were then employed to confirm the involvement of enriched pathways and TFs. RESULTS: LMWF5A was found to significantly inhibit a distinct set of pro-inflammatory cytokines (TNFα, IL-1ß, IL-12, CXCL9, CXCL10, and CXCL11) associated with pro-inflammatory M1/Th1 immune profiles. Gene enrichment analysis also suggests these cytokines are, in part, regulated by NF-κB and STAT transcription factors. Data from DNA-binding and reporter assays support this with LMWF5A inhibition of STAT1α DNA-binding activity as well as a reduction in overall NF-κB-driven luciferase expression. Experiments using antagonists specific for the immunomodulatory and NF-κB/STAT-repressing transcription factors, peroxisome proliferator-activated receptor (PPAR)γ and aryl hydrocarbon receptor (AhR), indicate these pathways are involved in the LMWF5A mechanisms of action by reducing LMWF5A drug potency as measured by TNFα and IL-1ß release. CONCLUSION: In this report, we provide evidence that LMWF5A reduces pro-inflammatory cytokine release by activating the immunoregulatory transcription factors PPARγ and AhR. In addition, our data indicate that LMWF5A suppresses NF-κB and STAT1α pro-inflammatory pathways. This suggests that LMWF5A acts through these mechanisms to decrease pro-inflammatory transcription factor activity and subsequent inflammatory cytokine production.


Subject(s)
Cytokines/metabolism , Inflammation/prevention & control , Leukocytes, Mononuclear/drug effects , Serum Albumin, Human/pharmacology , Anti-Inflammatory Agents/pharmacology , COVID-19/immunology , COVID-19/pathology , Cells, Cultured , Gene Expression Regulation/drug effects , HEK293 Cells , Humans , Inflammation/genetics , Inflammation/metabolism , Inflammation Mediators/metabolism , Interferon-Stimulated Gene Factor 3/metabolism , Leukocytes, Mononuclear/metabolism , Lipopolysaccharides , Lymphocyte Activation/drug effects , Molecular Weight , NF-kappa B/metabolism , Serum Albumin, Human/chemistry , Signal Transduction/drug effects , Signal Transduction/genetics , Signal Transduction/immunology , Transcription Factors/metabolism , COVID-19 Drug Treatment
4.
Bioorg Chem ; 105: 104429, 2020 12.
Article in English | MEDLINE | ID: covidwho-893618

ABSTRACT

Human serum albumin (HSA) as the most abundant protein in human blood plasma, can be a good indicator for evaluating severity of some diseases in the clinic. HSA can be find in two forms: reduced albumin (human mercaptalbumin (HMA)) and oxidized albumin (human non-mercaptalbumin (HNA)). The rate of oxidized albumin to total albumin can be enhanced in multiple diseases. Increase in HNA level have been demonstrated in liver, diabetes plus fatigue and coronary artery diseases. In liver patients, this enhancement can reach to 50-200 percent which can then lead to bacterial/viral infections and eventually death in severe conditions. Due to the induction of cytokine storm, we can say that the level of HNA in serum of coronavirus disease 2019 (COVID-19) patients may be a positive predictor of mortality, especially in patients with underlying diseases such as cardiovascular disease (CVD), diabetes, aging and other inflammatory diseases. We suggest that checking oxidized albumin in COVID-19 patients may provide new therapeutic and diagnostic opportunities to better combat COVID-19.


Subject(s)
COVID-19/diagnosis , Serum Albumin, Human/analysis , COVID-19/therapy , COVID-19/virology , Humans , Leukocytes, Mononuclear/cytology , Leukocytes, Mononuclear/metabolism , Liver/metabolism , Oxidation-Reduction , Reactive Oxygen Species/chemistry , Reactive Oxygen Species/metabolism , SARS-CoV-2/isolation & purification , Serum Albumin/analysis , Serum Albumin/chemistry , Serum Albumin, Human/chemistry
SELECTION OF CITATIONS
SEARCH DETAIL